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Abstract. We suggest a logmithmic correlation integral I ( X .  y) as a good tool for investigating 
self-ahbe and self-similar objects. First, it enables us to extract fractal exponents v1 and U, 
from one pattem of an object having any topology. Second, we show that the integral z(x .  y) 
which completely characterizes a monofractal object provides more information on the density 
correlation properties of the object than just the exponents v, and vs.  We quantify this additional 
information by introducing two parameters: 6, characterizing the object's anisotropy of o non- 
sealing nahlre. and x chmterizing the curvature of the logarithmic correlation integral of 
the object, We demonstrate that the four parameters: U,, us, 6 and x provide an effective 
parametrization of the logarithmic correlation integral of a self-aftine monofractal object. We 
give some examples of self-aftine objects. having the same fractal exponents U, and U,, but 
different parameters S and K indicating the differences in the correlation properties of the objects. 
We demonstrate ihat even a self-similar object showing isotropic scaling (!+ = U,) may have the 
non-scaling anisotropy parameter 6 different from zero, which indicates that the object has an 
asymmetric integral Z ( X .  y) and, therefore, different correlation properties in different directions. 
It is shown that the equality x = 0 outlines a class of objects for which the exponents U, and 
Y, are not defined uniquely. For instance, such objects can be treated as both self-similar and 
self-affine. If K is close to zero, estimation of the exponents U, and L*, may become problemuic. 
Relationships connecting the exponents U,, vY and fractal dimensions of the projection and cross 
section of an object are established. 

1. Introduction 

Many objects, such as relief vertical cross sections, rivers and river networks, growing 
surfaces and interfaces, dendritic structures, Wails of Brownian motion and others are self- 
&ne fractals [ l ] .  Each part of a self-fine object is an image of the whole object (either 
sWictly or in a statistical sense) scaled differently in different directions. In other words, 
if we take a part of the object within an X x Y rectangle and then change X and Y in a 
certain different way, we will get the same pattern. This finds its mathematical expression 
in the relationship 

(1) 
where M ( X ,  Y )  is the mass of the part of the object within the X x Y rectangle, and w,, vy 
are the fractal exponents. 

While there are several methods for determination of the fractal dimension of self- 
similar objects, methods for determination of the fractal exponents characterizing self-affine 
objects seem to be much less developed. The fractal dimension of a self-similar object can 
be easily found using one pattern. However, in a general case, e.g. for branched structures, 

M ( X .  y )  N xwx Y y ' / h  
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one cannot find the fractal exponents u., and uy from one pattern of a self-affine object. 
The problem is that the mass M only scales if the sides of the rectangle change in a certain 
different way and, in contrast to the self-similar case, we do not know a priori how to 
change X and Y because we do not know the ratio w x / w y .  We can only state that thq mass 
within the rectangle scales provided X ’ / ” z  - Y1/” j .  Therefore, it seems that if one faces 
the problem of determination of the fractal exponents of a natural or simulated self-affine 
object using one pattern one would usually fail to do that. An appropriate method has only 
been developed for a special case when the self-affine object represents a non-branched line 
(e.g. see 121). 

The methods available for studying a general self-affine object do not analyse the 
geometry of the object, but rather follow how the mass MO of the total object changes 
as the sizes XO and Yo of the object change. If one has available either an ensemble of the 
same type of objects of different size, or the patterns of the object at different stages of 
growth, the ensemble or the evolution of the object can be characterized by exponents ru, 
and ay using the relationship 

(2) 
We will call 01, and ay external exponents, in contrast to the internal exponents U, and 
uy which characterize the geometry of the object. As shown in section 2 the internal and 
external scaling exponents have different meanings and are not always equal. A method 
for extracting the exponents U, and uy from one pattern of a fractal object is developed in 
section 3. We also introduce two parameters, 6 and IC which complement the information 
contained in the fractal exponents U, and us. We establish relationships connecting the 
exponents U, and uy and fractal dimensions of the projection and cross section of an object. 
In section 4 we demonstrate the applicability of the developed method using some fractal 
objects for which U, and uy are known theoretically. We show that the estimated values of 
U, and uy correspond to the theoretical ones. We also estimate the parameters 6 and IC for 
these objects. In section 5 we show the significance of the introduced parameters 6 and K. 
Using these parameters we indicate some types of fractal objects showing rather unexpected 
correlation properties. Finally. some conclusions are drawn in section 6. 

V Sapozhnikov and E Foufoula-Georgiou 

M ( X 0 ,  Yo) - x y x  - Y p .  

2. Internal fractal exponents versus external exponents 

Since methods for extracting the internal exponents from one pattern of the object are not 
available in the general case, external exponents instead of internal ones are often used to 
describe the geomeq of the object (see, e.g. [3-5]). However, this approach supposes that 
internal and external exponents are equivalent. We will present theoretical evidence and 
two examples demonstrating that this supposition is, generally speaking, wrong. 

(i) The external exponents may be different from the internal ones. To compare the 
external exponents a, and ay with the internal ones, U, and wyr let us examine a growing 
self-similar object as a particular case of a self-affine object. If the size of the object is 
R and the mass is M ( R ) ,  then the mass within the square of size r covering a part of the 
object will be m(r, R )  = M(R)(r/R)’/”.  If M ( R )  - R i l e ,  then 

m(r, R )  - R’/”‘”. (3) 
The last relationship shows that 01 = w if and only if m does not depend on R ,  which 

means that the external and the internal exponents are equal when, in the course of its 
evolution, the object neither grows nor dissolves inside. If this is not the case, the internal 
and external exponents differ. 
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Figure 1. One step of a process where growth of an 
object in size is accompanied by its intend dissolution. 
Due to the dissolution the external exmnents b. = olu = ” ,  
log3/log(64/9) characterizing the process are different 

describing the geometry of the object. 
from the internti fractal exponents U,= vy= 1og3/1og8 

As an illustration let us build an ensemble of Sierpinsky carpets. Let the first one be 
just a square. To build the next carpet we take two steps. At the first step we put together 
8 squares to build a regular 3 x 3 Sierpinsky carpet and at the second step we divide the 
initial squares in 9 squares and delete the middle one (which corresponds to the dissolution 
of the object in the course of its growth)+ee figure 1. Repeating this process will give us 
an ensemble of Sierpinsky carpets with U,= uy= log3/log8. However, the mass of each 
next carpet will be not 8, but 8 x (8/9) times greater than the mass of the previous one, 
and therefore for this process ax =ay = log3/log(64/9). Clearly, w, and uy are different 
from ax and my in this case. 

(ii) In some cases the ensemble of objects or the object growth is characterized by the 
external exponents, and the internal exponents of the objects are not defined uniquely at 
all. As the simplest case here let us consider compact objects. For example, Scheidegger 
river networks obtained by computer simulation are shown to be compact objects and their 
ensemble is characterized by the values cdz = $.ay = 7 [3,4]. It is implied (e.g. see the 
discussion after (4) in [3]) that these exponents characterize the fractal geometry of the 
networks. However, the compactness of a two-dimensional object means that the object is 
just a piece of a plane. This, in turn, means that, in contrast to the external exponents 01, and 
ay that characterize the evolution (or the ensemble) of the networks, the internal exponents 
characterizing their geometry are not defined uniquely. For example, it is quite obvious that 
a piece of a plane can be treated as a self-similar object as well and be characterized by w,= 
uy= 1/D = 1/2. It will be shown formally in section 5 that any fractal exponents satisfying 
the relationship U, + U,. = 1 describe a compact object. The non-uniqueness of the fractal 
exponents U, and w y  can arise for non-compact objects too. As shown in section 5 there 
exists a class of non-compact fractal objects for which the internal exponents w, and U,. are 
still not defined uniquely and derive general conditions under which an object falls into this 
class (equations (29) and (30)). The internal exponents of such objects are bounded only 
by relation (31). 

The above theoretical evidence and examples demonstrate clearly that the external 
exponents cu, and ay not only require a set of patterns for their estimation, but, generally 
speaking, are something different from the internal exponents w, and U,.. Therefore 
elaboration of a method that would enable us to extract the internal fractal exponents from 
one pattern of an object is highly desirable. Such a method is developed in the next section. 

1 

3. Correlation characteristics of self-affine objects 

3.1. A method for estimating the fractal exponents U, and uy 

Let us write the scaling equation describing a self-affine object in the form 
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Introducing x = log X, y = log Y and z = log M, we get 
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The function M ( X ,  Y )  is h o w  as the correlation integral [6]. Here by analogy we call 
the function z ( x ,  y) the logarithmic correlation integral of the object under study. 

Equations (5) and (6) describe a cylindric surface z ( x ,  y). i.e. a surface that has constant 
derivative in a specific direction (the direction of the cylinder generating line). The second 
equality in (6) is true only if the first one is true. Comparing (6) with the equation 

az az 
ax ay -d.7 + -dy = dz 

valid for any values of dx and dy, we obtain 
a2 az 

U, - + vs- = 1 . 
ax ay 

(7) 

The last relationship provides a method for estimating the fractal exponents v, and uy of a 
self-affine object. Indeed, having estimated the logarithmic correlation integral z(x ,  y)  from 
a pattern of the object (by direct calculation of the mass M(X, Y) within rectangles of sizes 
X x Y ) ,  one can calculate the derivatives az(x, y)/ax and az(x, y)/ay and use them to find 
the values of U, and uy. Ideally, two points ( x ,  y )  giving different values of the derivatives 
& ( x ,  y ) / a x  and az(x, y)/ay are sufficient, but for a good estimation it is preferable to 
compute the derivatives at all ( x ,  y )  points and follow a least-squares estimation technique. 
Such a technique is employed in section 4 to extract the fractal exponents from a pattern of 
some simulated fractal objects. 

3.2. Quantifiing the other correlation characteristics of se[f-afine objects 

The solution of (8), as well as of (6), is 

(LX is> X Y  
z ( x , y )  = - f - + w  - - - 2v, 2vy 

(9) 

or 
M(X, y )  = x'/2~'yl/2Y,qxI/zYI y-1/% 1 (10) 

where w ( c )  and Q(6) 
Relationship (9) shows that the fractal exponents U, and uy contain only a part of the 

information on the correlation properties of a fractal object. The rest of the information is 
contained in the function w(c) .  Indeed, in section 5 we give an example of fractal objects 
having the same values of i!, and U? and different correlation properties because their w ( 5 )  
functions are different. It can be seen from (6) and (9) that while the fractal exponents U, 
and uy determine the direction of the generating line of the cylindric surface z ( x ,  y), the 
function w ( f )  provides the additional information needed to describe the shape of any cross 
section of the cylindric surface. Thus, together U,. U? and w ( 5 )  completely determine the 
shape of the logarithmic correlation integral z ( x ,  y). 

Let us study some general features of the behaviour of the function U ( ( )  and z ( x ,  y). 
The nature of the function M ( X ,  Y) imposes some restrictions on U($) .  Indeed, by its 

exp(w(Iog5)) are arbitrary functions, 
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meaning, the function M ( X ,  Y )  cannot have negative derivatives. As it follows from 
(9). the requirements a M ( X ,  Y ) / a X  > 0 and a M ( X ,  Y ) / a Y  > 0 lead to the inequality 
- 1 i a)(.$) < 1. Assuming, that w ( 5 )  does not oscillate at infinity, we find, that it has two 
asymptotes, “(+-CO) and o’(-cm). This gives us an important feature of o(C) and of the 
z ( x ,  y) surface, namely, that 00) saturates to two lines at positive and negative infinities, 
i.e. z ( x ,  y )  is composed of two planes (one when 5 = x / 2 u x  -y/2uy is a large positive value 
and the other when it is a large negative value) and an intermediate zone between them. 

Since the z ( x ,  y )  surface is a cylinder it can be described using only two coordinates 
(6, q )  in the appropriate coordinate system (6 ,  <, q).  We obtain this coordinate system from 
the original ( x .  y ,  z )  by (i) rotating the ( x ,  y ,  z )  system about the z-axis until the y-axis 
coincides with the projection of the generating line on the x-y plane, and (ii) rotating the 
system about the new x-axis until the y-axis coincides with the generating line. It can 
be shown that in this new coordinate system the equation for the logarithmic correlation 
integral takes the form 

As we see, because the <-axis coincides with the cylinder generating line, the equation for 
the cylinder surface is expressed in terms of 5 and q only. The function q(5 )  is exactly 
what one sees when one views the z ( x ,  y) surface from the direction of the generating line. 
Since the t-q plane is orthogonal to the direction of the generating line, it is preferable 
to use q ( ( )  instead of o(5) to describe the correlation properties of an object, since these 
properties are now not only complementary to the scaling exponents U, and uy (determining 
the direction of the generating line of the cylinder), but also independent of them. 

Since the z ( x ,  y )  surface has two asymptotic planes, its cross section q ( t )  saturates to 
two asymptotic lines. Therefore VI(.$) has two asymptotic values, $(+CO) and q‘(-CO). 

To quantify the correlation characteristics of a self-&ne object, other than the fractal 
exponents U, and uy we introduce two parameters 

v’(-@ + V ’ ( + W  
2 

6 =  

- U; - U,’ U; + U: o’(--w) + o’(+oo) (12) - 
2u,vy Jm + 2u,u, Jw 2 

and 

(13) 

The value of S characterizes the anisotropy of the cross section of the function z ( x ,  y) 
(6 = 0 when the cross section is isotropic), and K is a measure of curvature of the z(x, y) 
function (K = 0 when the surface is flat). These two parameters are important characteristics 
of a se l f - f ine  object. They complement the information contained in the fractal exponents 
U, and uy.  The parameter 6 describes a different type of anisotropy of a self-affine object 
than the ratio of the scaling exponents u,/u,. In fact, in section 5 we show that even 
a self-similar object (U, = uy) may have anisotropic correlation characteristics which is 
indicated by 6 # 0. To distinguish between these two types of anisotropy we coined the 
terms scaling anisotropy parameter for v x / v y  and non-scaling anisotropy parameter for 6. 
Regarding the curvature parameter K, in section 5 we show that if i t  is equal to zero, i.e. 

v’(--CO) - tl’(+-CO) - U,’ + U,’ ”(--CO) - w‘ (+w)  - 
2 2u,vy Jm 2 

K =  
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the cylindric surface z (x .  y )  degenerates into a plane, the exponents v, and vu of the fractal 
object are not defined uniquely, 

3.3. Further study of the shape of the su$ace z ( x ,  y ) .  Connection between the exponents 
v, and vy and other characteristics of fractal objects 

Let us now find the equations for the plane parts of the surface z(x,y). To do that 
we consider the slope of each plane in the x and y directions. By definition of the 
function M ( X ,  Y) the derivatives & ( x ,  O) /ax  and az(0, y)/ay are fractal dimensions of 
cross sections of the object in the directions of X and Y axes, D, and Dcy, respectively. As 
shown in the appendix the derivatives az(0, y)/ax and az(x, O)/ay are correlation fractal 
dimensions 0 2  [6] of the projections of the object on X and Y axes, Dpx2 and Dpy2, 
respectively. Putting z(0,O) = 0 (which is just a matter of normalization of M ( X ,  Y ) )  we 
get the equations for the two asymptotic planes 
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z-@, Y) = Dpx2x + Dcyy 

z+(x, Y) = Dcxx + Dpy~y. 
Let us remind the reader that the generalized fractal dimensions Dq are 

D -1im - r-0 (q - 1) log& 

Here pi is the fraction of the measure in a box of size E (in our case it is the fraction of the 
object that projects into an interval of size E ) .  DO is the fractal dimension of the support of 
the measure, D ,  and 0 2  are called information and correlation dimensions, respectively. 

The relationships (14) and (15) enable us to demonstrate clearly what one gets when 
one determines the fractal dimension of a self-affine object: one finds how the mass within 
an X x Y rectangle changes as its sides change proportionally ro each other. In other 
words, one just finds the slope of the section of the plane z ( x ,  y) by the plane y = x t a,  
where constant a = log(Y/X). If v, vy then for positive values of a (Y > X )  the 
plane y = x + a  will only intersect the z - ( x ,  y) plane, while for negative values of a both 
z-(x, y) and z + ( x ,  y) planes will be intersected. This creates two slopes, corresponding 
to what is called global and local fractal dimensions of a self-fine object DG and DL,  
correspondingly [SI. Putting y = x + a  in (14) and (15), we obtain that for U, > vy 

DG = Dpxli + Dcy 

DL = Dpy2 + Dm . 
(18) 

(19) 
It follows from (14), (15) and (8) that for the case DPxz = Dpy2 = 1 this result coincides 
with the expressions DG = (uy - v, t l)/uy, DL = ( v ~  - vy t I)/vx from [SI. 

Having substituted (9) in (14) and ( 1 9 ,  and differentiated the equations with respect to x 
and y one can see that the fractal dimensions of the cross sections and of the projections, D,, 
Dcy and D,z, Dp,2 are connected with the w ( t )  function by the following relationships: 

(20) 

(21) 
so knowing, say, U,, vy, Dpx2 and DPyz one can easily calculate the parameters 6 and K 

from (12), (13) and (ZO), (21). 

o’(-w) = -2uyDCy + I = 2 ~ x D ~ ~ 2  - 1 

@’(+CO) = ~ L J ~ D ~  - 1 = -2vyDPy2 i- 1 
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Substituting (14) and (15) into (8) we obtain the important relationships 

U, 0, + uY Dpy2 = 1 (22) 

which can be used for estimation of U, and U, given Om, Dcyr Dpxl and Dpy*. For a 
self-similar object (22) and (23) give 

D ,  + Dpy2 = D c y  + Dpr2 = D (24) 
where D is the fractal dimension of the object. We note that the last equation is different 
from the equation obtained by Mandelbrot [SI: Du + Dpyl = D where Dpyl is the 
information dimension [6] of the projection on the Y-axis. In the next section we consider 
some examples confirming our result (22)<24). 

4. Analysis of correlation properties of some fractal objects 

To illustrate the application of the proposed approach for analysing self-affine objects we 
study the correlation properties of three fractal objects whose fractal exponents we know 
in advance. The objects are shown in the upper row of figure 2: (a) simulated river 
( U ,  = U ,  = 0.77), (b) trace of Brownian motion (vJ = 1, U ,  = $) and (c) 3 x 5 Sierpinsky 
carpet (U, = log5/log6 = 0.898, uy = log3/log6 = 0.613). (The simulated river channel 
shown in figure 2(a) is built by a special type of a self-avoiding walk. If a walking particle 
crossed its own trajectou, the formed loop was erased. The final trajectory of a random 
walk was regarded as a river. See [2, 91 for details). 

Taking advantage of (8) we find the values of the exponents v, and U) for the objects 
shown in figure 2(a) and (b)-see figure 3. They are (a )  U ,  = uy = 0.77 and (b) U, = 1.00, 
U, = 0.48, in agreement with the theoretical values. 

Let us first visualize the surfaces z(x, y) of the objects (see figures 2(a)-(c), bottom 
row). Since the functions z(x, y) of fractal objects are cylindric surfaces we can view them 
in the direction of the cylinder generating line (see (5) and (6)). In other words, it is possible 
to adjust the rotation angle U, about the z-axis and the tilt angle @ above the x-y plane 
from which the surface is viewed to see only the edge of the surface (which is the a(.$') 
function). It is not difficult to show that the following relationships connecting the angles 
and the exponents hold: 

tanq  = vJuY (25) 

(26) sin @ = ( I  + U: + v,) 2 -I/Z 

or, reversely 

U ,  = sin U, cot @ 

uy = cos rpcot @ . 
(27) 

(28) 

The second row of figure 2(a)-(c) shows the surfaces viewed from the angles 01 and @ 
determined by (25) and (26). It can be seen that z ( x ,  y)  really represent cylindric surfaces 
and that the angles and @ correspond to the relationships (25)-(28). 

The surface z(x,y) of the Sierpinsky carpets is step-like because of the step-like 
procedure of their construction. This produces a large spread in the values of the derivatives 
& / a x  and az/ay and does not allow us to find its fractal exponents from (8). However, 
looking at its z(x, y) surface in figure 2(c), middle row, one can see that apart from its 
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Eyre 2. Fractnl objects and their L ( X , Y )  functions: (a) simulated river (a = vs = 0.77, 
6 = 0. K = 0.27), (b) Brownian motion v3ce (4 = 1, vr = 112, 6 = -0.083, x = 0.417) and 
(c) 3 x 5 Sierpinsky c q e t  (U, = logS/log6 = 0.898, vs = log3/log6 = 0.613, 6 = -0.038, 
x = 0.266). The second mw shows the surfaces viewed from the angles r,? and $ determined 
by (25) and (26). 

x 0'6:'~ 0.4 

. *  . .  s Q 

0.2 . .  
.. . .  

s.:. . 
0.0 
0. 0.8 0.9 1 .o 

az/ax w a x  
Figure 3. Estimation of the fractal exponends w, and us for (a )  simulated river-e figure 2(n), 
and (b) trace of Brownian motion-see figure Zb). Advantage is taken of (8).  The estimated 
values m (a )  ur = uy = 0.77 and (b) U, = 0.48, U,. = 1.00. 

step-like form it is a cylindric surface, with !he direction of generating line corresponding 
to (25)-(28). 

As can be seen from (14) and (15) the slopes of the intersection of the z ( x ,  y )  surface 
with the XZ and Y Z  planes are 0, and D,,, respectively. Having found these values for 
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Table 1. Summary of correlation characteristics U,, vv. S and K ,  of the fmctd objects simulated 
in Lhe omer. 

Object Figure U, VY v,/ux s K 

River channel 2(a) 0.77 0.77 I 0 0.27 
Trace of Brownian motioin 2(b) 1 0.5 0.5 -0.083 0.417 
5 x 3  Sierpinsky carpet 2(c) 0.898 0.613 0.683 -0.038 0.266 
3x3 Sierpinsky carpet 4(0) 1 1 I 0 0.577 
3x3  Sierpinsky carpet 4(b) 1 1 1 -0.268 0.310 
3x3  Sierpinsky carpet 4(c) I 1 1 0 0.040 

( 0 )  ( b )  (C) 

X X X 

Figure 4. Logarithmic correlation integrals z(x, y) of different self-similar Sierpinsky carpets 
having fractal dimension D = 1 (bottom figures) and the corresponding generators (top figures). 
The deleted p a i s  are marked black. Though the carpets have the same fractal dimension 
their correlation properties are different which is reflected in the difference of their z(x,  y) 
functions The asymmetric Function z(x .  y) for the carpel (b) shows lhat this self-similar fnctal 
is anisovopic. 

the three analysed objects we used (20) and (21) to estimate w'(+m) and @'(-CO) and then 
(12) and (13) to determine the parameters 6 and K characterizing the anisotropy and the 
curvature of their logarithmic correlation integrals z ( x ,  y) .  The values of the parameters are: 
for the river 6 = 0, K = 0.27, for the trace of Brownian motion S = -0.083, K = 0.417, 
and for the Sierpinsky carpet 6 = -0.038, K = 0.266 (see table 1 for a summary). For all 
three objects the curvature parameter is significantly different from zero. As will be seen in 
the next section this is a necessary condition for being able to estimate the fractal exponents 
U, and vy .  The anisotropy parameter 6 is equal to zero for the self-similar object. the river 
channel. One could think that a self-similar object is bound to have symmetric correlation 
properties and therefore its non-scaling anisotropy parameter 6 should always be equal to 0. 
However, as shown in the next section this is not true. 

We make use of the above fractal objects to demonstrate that relationships (22)-(24) 
hold. For instance, from the z(x, y) function of the river channel (figure 2(a)) we found 
Dpx2 = Dpy? = 0.91 and D, = D,, = 0.39, which are in a good agreement with the fractal 
exponents of the channel U, = vy = 0.77 found above. We also projected the picture of 
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the river and found the values D,z and Dp,2 directly by calculating the sum from the right 
part of (A4). The duect calculation gives Dpx2 = Dpy2 = 0.92, in good agreement with the 
values found from the analysis of the function z ( x ,  y ) .  

Application of the same procedure to some Sierpinsky carpets confirms the results 
(22H24), as well. In these cases we were also able to make sure that the determined 
values of the derivatives az(0. y ) / k  agree with the theoretical values of the correlation 
dimension D,z, and not with the informative dimension D,, as implied by Mandelbrot in 
[8]. For instance, for the Sierpinsky carpet, shown in figure 4(c) &(O. y ) / a x  = 0.53; the 
projection of the carpet and the direct calculation gives the same value. The theoretical 
value D,z = Dpy2 = -log(Cp:)/log3 = 0.535, while the informative dimension 
D,I = DPyl = - ( C p i l o g p i ) / l o g 3  = 0.579. The dimensions of the cross sections 
found from the analysis of the z ( x ,  y) function are D ,  = Dcy = 0.47, so D ,  + DpyZ = 1 ,  
in agreement with (24). 

5. Surprising correlation properties of some fractal objects 

X I .  A class offactal  objects for which the scaling exponents v, and vy are not defined 
uniquely 

As pointed out in section 3 ,  having found the values of D,, DE,, Dpx2 and D,,z one can 
calculate the fractal exponents v, and ur from (22) and (23). However, this system of linear 
equations has an infinite set of solutions if the fractal dimensions of the cross sections are 
equal to the fractal dimensions of the corresponding projections 

D ,  = Dpxi Dx (29) 

If equations (29) and (30) hold the cylindric surface z ( x ,  y )  degenerates into a plane. 
Indeed, comparing (13), (20) and (21) with (8) one can easily see that the conditions (29) 
and (30) are equivalent to one condition: the curvature parameter K = 0, which means that 
the function o(f )  is a straight line, i.e. z(x, y )  is a plane. In this case, equations (22) and 
(23) are reduced to one equation 

D, = Dpyz D, . (30) 

v,D, f uyDy = 1 (31) 
having an infinite set of solutions v, and uy Equations (29) and (30) (or, equivalently, the 
condition K = 0) specify a class of fractal objects for which it is impossible to point out a 
unique pair of fractal exponents. These objects can be described by any exponents which 
are in agreement with (31). In other words, when the surface z (x ,  y) degenerates into a 
plane, the difference between the self-affine and self-similar object disappears and there is 
no preferable direction for cutting the surface because the trace is a straight line in any 
direction. For instance, a compact object is characterized by D, = D,, = DPxz = Dprz = 1. 
Comparing this relationship with (311, we obtain v, + vY = 1. This means that a compact 
object can be treated as a self-afiine one with arbitrary ratio u,/u,, including e.g. v,/uy = 1 
(self-similar case). The only significant relationship for such an object is that the sum of 
the exponents v, and vy is 1 .  

It is important to emphasize that relationships (29) and (30) can also be true for 
a non-compact object. For example, the Sierpinsky carpet having a 3 x 5 generator 
with four non-empty cells in the comers (see figure 5 )  has Du: = Dpx2 = Iog2,i log 5, 
De, = DpY2 = log2/ log3,  and the only thing one can say about the fractal exponents U, 
and vy is that they must satisfy (31). 
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Figure 5. For this Sierpinsky “pet (29) and (30) hold, i.e. fractal 
dimensions of cross sections are equal to the corresponding fncwl 
dimensions of projections (0, = Dprz = log2/log5, De? = Dpy2 = 
log2/log3) and, equivalently, the CUNaNre parameter x = 0. Therefore 
its logarithmic conelation integral ~ ( x .  y )  degenerates into a plane and 
there is no unique pair of the exponents U, and wy fa this object. Any 
pair of the exponents bound by relationship (31): (logZ/log5)v, t 
(log2/log3)wy = 1 characterizes this object. 

As we have seen, the curvature parameter K is an important characteristic of correlation 
properties of an object. Indeed, if K = 0, the fractal object can be characterized by an 
infinite number of exponents U, and uy. Moreover, even if K # 0, but is close enough to 
zero, that is, the Z(X, y )  function is flat, the estimation of the fractal exponents may become 
impossible (though in this case they exist). For example, if one uses (8) to estimate the 
exponents ux and w y  one may find that since the surface z ( x ,  y) is not curved enough, the 
variations in the true values of the partial derivatives az(x, y ) / a x  and az(x, y ) p y  over the 
surface z ( x ,  y )  are small and therefore masked by statistical fluctuations. 

5.2. Fractal objects having the same scaling exponents w, and vy and different correlation 
propeflies. Anisotropic self-similar objects 

We have shown that in some cases one surface z ( x ,  y) can be characterized by different 
fractal exponents U, and v y .  We will now demonstrate that different surfaces may correspond 
to the same exponents. Indeed, Sierpinsky carpets whose generators and corresponding 
z ( x ,  y )  surfaces are shown in figures 4(a)-(c) have the same fractal exponents U, = wy 
= 1/D = 1. Calculating Dp2 as -log(Cp;)/log3, where pi = ni/n (ni is the number 
of non-empty squares in the ith row and n is the total number of non-empty squares 
in a generator), and using (12). (13), (20) and (211, we find (i) Dpx2 = Dpy2 = 1, 
8 = 0, K = 0.577, (ii) Dpx2 = 0.535, Dpy2 = 1, S = -0.268, K = 0.310, and (iii) 
Dpxz = Dpy2 = 0.535, 6 = 0, K = 0.040. So, objects having the same fractal dimension 
may have different parameters K and S and, hence, different surface z ( x ,  y). Moreover, the 
example shown in figure 4(b) demonstrates that density correlation characteristics even of 
a self-similar object can be different in different directions. This anisotropy is reflected in 
the asymmetry of the function z ( x ,  y )  and is characterized by the value of the non-scaling 
anisotropy parameter S = -0.268. 

6. Conclusion 

The approach proposed, based on the study of the logarithmic correlation integral (i) provides 
a method for extracting the fractal exponents U, and w y  characterizing the geometry of a 
self-fine or self-similar object from one pattern only and (ii) permits a better understanding 
of the correlation properties of such objects. To the best of our knowledge no such method 
is available in the literature and this may have resulted in the erroneous use of the external 
exponents or, and ay (which can be estimated from an ensemble or evolving pattern) for 
the description of the geometry of a self-affine object. As demonstrated in this paper the 
external and internal exponents are generally not equal, except in the special case that the 
object evolves in a way that it neither grows nor dissolves inside. Even in such a case the 
suggested approach enables one to find the external exponents (unless (29) and (30) hold) 
and thus, to predict the evolution of the object from one pattern only instead of an ensemble 
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of patterns. 
Apart from the ability to estimate U, and vy the use of the logarithmic correlation 

integral provides more information about the correlation structure of an object than simply 
v, and This additional information was quantified by introducing two parameters, one 
of them (8) measuring the anisotropy of the object of non-scaling nature and the other 
( IC)  measuring the curvature of the logarithmic correlation integral. Several examples were 
presented to illustrate the fact that even self-similar fractals for which U, = uy (i) may 
have different correlation properties and (ii) may still exhibit anisotropy in their correlation 
structure. The four parameters U,, us, 6 and IC were connected to fractal dimensions of 
projections and cross sections of the object. Conditions under which a fractal object has 
non-unique U, and uy parameters were derived. 

In this paper our analysis focused on the characterization of a monofractal object. 
The same analysis could be applied to a multifractal object to characterize the behaviour 
of the first moments only of its correlation structure. However, to fully characterize a 
multifractal self-afline object one could introduce a function z ( x ,  y; q) where the parameter 
q characterizes the order of the moment. Following the same approach as here a reduced 
efficient parametrization of a self-affine multifmctal object could be obtained in terms of 
four functions: u, (q) ,  uy(q). 6(q)  and K ( q ) .  This extension is currently under investigation. 
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V Sapozhnikov and E Foufoula-Georgiou 

Appendix. 

The density correlation function of the object c ( X ,  Y )  = a 2 M ( X ,  Y ) / a X a Y  is the 
probability to find a particle at the point (Xo + X ,  YO + Y) provided there is a particle 
at the point (XO, YO). For the lattice model it can be estimated as 

where N is the total number of the particles in the object, S(X0, YO) = 1 if there is a particle 
at the point (XO, Yo) and ~ ( X O ,  Yo) = 0 otherwise. Hence M ( X ,  Y )  can be estimated as 

For large values of Y so that Y N Yo.max, where YO,,, is the size of the object in  the 
Y-direction 

~ = S ( X O  + U ,  YO + V )  N N x ( X 0  + U )  (A31 

where N x ( X o  + U )  is the number of particles of the object that project onto the lattice point 
X O  + U of X-axis. Therefore, for large values of Y the function M ( X ,  Y )  can be estimated 
as 

v=o 
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The right-hand side of the last equation up to a constant coefficient coincides with 
the expression for the correlation integral from [7] which in a one-dimensional case is 
C(X) = N - 2  Erj=, 6'(X - 1x0; - XojI) where O(X) is the Heaviside function and XoC, XO, 
are the coordinates of the particles. The value C(X) is the number of pairs (i. j )  whose 
distance lXoi - X o j l  is less then X. When calculating the right-hand side of expression 
(A4) one performs the same procedure as when he calculates C(X) for the projection 
of the particles of the object on X-axis. As is shown in [6,7], C(X) scales as XD2. 
In other words, M(X. Y )  - XDez2 and az(x, y ) /ax  = D,,z for Y N Yo,ma. Since for 
y / u ,  >> x/uX the surface z ( x , y )  is a plane and the derivative 8z(x,y) /ax is constant 
the equality 8z (x ,y ) /ax  = D,z is valid not only for y Y logYo.ma, but also for any 
Y >> ( q t J x ) x .  
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